The programme comprises a research project and a taught component:
Research project
The research component of the programme comprises a major project. Research may be based in the area of the extended literature review and/or the research methods module and requires a substantial piece of independent research upon which a written dissertation is based. The School of Geography, Earth and Environmental Sciences and the School of Biosciences are heavily involved in research in nanosciences and its implications on environmental and human health, and have excellent facilities, which include research laboratories, field measurement instrumentation and powerful computers. For projects with other foci, supervision from other schools is also possible. The breadth and depth of expertise and equipment will enable major projects to include experimental laboratory studies, fieldwork and/or modelling and data analysis. The project is supervised by two members of academic staff with knowledge and understanding of the chosen research topic.
Taught component
Environmental and Biological Nanoscience
This module discusses the fundamentals of nanoscience, looking at the unique properties of the nanoscale. Synthesis and characterisation of nanomaterials is discussed. Sources, transport and fate of nanomaterials are investigated, along with the relevant environmental processes. The background to the current UK and wider response to nanomaterials is discussed. An extended literature review is expected as part of this review. This broadly based activity is designed to give the student in-depth knowledge of a chosen area of research activity, as well as training in a number of generic skills such as literature searching, critical assessment of scientific literature, report writing and referencing. The extended literature review acts both as a means of formal assessment and a precursor to the major project.
Molecular and cellular mechanisms of (nanomaterial) Toxicology
The principles of toxicology will be covered with respect to the ways in which agents can gain access into biological systems, their biotransformation , disposition and excretion. Differences between molecules and nanomaterials will be highlighted. The mechanisms of adverse effects on biological systems will then be investigated in relation to cellular and genetic toxicity and the potential disease consequences. Particular emphasis will be on understanding the dose–response relationships, methods of assessment and prediction and specific studies on nanomaterials will be highlighted. A library project and an oral presentation to the student group is included.
Research Methods
Students learn key methods relevant to the conduct of research through a series of lectures and independent research exercises. The areas covered include statistical analysis, hypothesis generation, and research planning and project management. There are also research seminars within the School and University, which inform students of current research within the field of air pollution.
Show less